
Network Working Group P. Ford-Hutchinson
Request for Comments: 4217 IBM UK Ltd
Category: Standards Track October 2005

 Securing FTP with TLS

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document describes a mechanism that can be used by FTP clients
 and servers to implement security and authentication using the TLS
 protocol defined by RFC 2246 , "The TLS Protocol Version 1.0.", and
 the extensions to the FTP protocol defined by RFC 2228 , "FTP Security
 Extensions". It describes the subset of the extensions that are
 required and the parameters to be used, discusses some of the policy
 issues that clients and servers will need to take, considers some of
 the implications of those policies, and discusses some expected
 behaviours of implementations to allow interoperation. This document
 is intended to provide TLS support for FTP in a similar way to that
 provided for SMTP in RFC 2487 , "SMTP Service Extension for Secure
 SMTP over Transport Layer Security", and HTTP in RFC 2817 , "Upgrading
 to TLS Within HTTP/1.1.".

 This specification is in accordance with RFC 959 , "File Transfer
 Protocol". It relies on RFC 2246 , "The TLS Protocol Version 1.0.",
 and RFC 2228 , "FTP Security Extensions".

Ford-Hutchinson Standards Track [Page 1]

https://tools.ietf.org/pdf/rfc2246
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2487
https://tools.ietf.org/pdf/rfc2817
https://tools.ietf.org/pdf/rfc959
https://tools.ietf.org/pdf/rfc2246
https://tools.ietf.org/pdf/rfc2228

RFC 4217 Securing FTP with TLS October 2005

Table of Contents

 1. Introduction .. 3
 2. Audience .. 5
 3. Overview .. 5
 4. Session Negotiation on the Control Port 5
 4.1 . Client Wants a Secured Session 5
 4.2 . Server Wants a Secured Session 6
 5. Clearing the Control Port 6
 6. Response to the FEAT Command 7
 7. Data Connection Behaviour 8
 8. Mechanisms for the AUTH Command 9
 9. Data Connection Security .. 9
 10. A Discussion of Negotiation Behaviour 11
 10.1 . The Server’s View of the Control Connection 11
 10.2 . The Server’s View of the Data Connection 12
 10.3 . The Client’s View of the Control Connection 14
 10.4 . The Client’s View of the Data Connection 15
 11. Who Negotiates What, Where, and How 15
 11.1 . Do we protect at all? 15
 11.2. What level of protection do we use on the Control
 connection? .. 15
 11.3 . Do we protect data connections in general? 16
 11.4 . Is protection required for a particular data transfer? ... 16
 11.5. What level of protection is required for a
 particular data .. 16
 12. Timing Diagrams ... 16
 12.1 . Establishing a Protected Session 17
 12.2. Establishing a Protected Session Without a
 Password Request ... 18
 12.3. Establishing a Protected Session and then
 Clearing with the CCC 19
 12.4 . A Standard Data Transfer Without Protection 20
 12.5 . A Firewall-Friendly Data Transfer Without Protection 20
 12.6 . A Standard Data Transfer with Protection 21
 12.7 . A Firewall-Friendly Data Transfer with Protection 21
 13. Discussion of the REIN Command 22
 14. Discussion of the STAT and ABOR Commands 22
 15. Security Considerations 23
 15.1 . Verification of Authentication Tokens 23
 15.1.1 . Server Certificates 23
 15.1.2 . Client Certificates 23
 15.2 . Addressing FTP Security Considerations [RFC-2577] 24
 15.2.1 . Bounce Attack 24
 15.2.2 . Restricting Access 24
 15.2.3 . Protecting Passwords 24
 15.2.4 . Privacy ... 24
 15.2.5 . Protecting Usernames 24

Ford-Hutchinson Standards Track [Page 2]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc2577

RFC 4217 Securing FTP with TLS October 2005

 15.2.6 . Port Stealing 25
 15.2.7 . Software-Based Security Problems 25
 15.3 . Issues with the CCC Command 25
 16. IANA Considerations ... 25
 17. Other Parameters .. 25
 18. Scalability and Limits .. 26
 19. Applicability ... 26
 20. Acknowledgements .. 26
 21. References .. 26
 21.1 . Normative References 26
 21.2 . Informative References 27

1. Introduction

 This document describes how three other documents should be combined
 to provide a useful, interoperable, and secure file transfer
 protocol. Those documents are:

 RFC 959 [RFC-959]

 The description of the Internet File Transfer Protocol.

 RFC 2246 [RFC-2246]

 The description of the Transport Layer Security protocol
 (developed from the Netscape Secure Sockets Layer (SSL)
 protocol version 3.0).

 RFC 2228 [RFC-2228]

 Extensions to the FTP protocol to allow negotiation of security
 mechanisms to allow authentication, confidentiality, and
 message integrity.

 This document is intended to provide TLS support for FTP in a similar
 way to that provided for SMTP in RFC 3207 [RFC-3207] and HTTP in RFC
 2817 [RFC-2817].

 The security extensions to FTP in [RFC-2228] offer a comprehensive
 set of commands and responses that can be used to add authentication,
 integrity, and confidentiality to the FTP protocol. The TLS protocol
 is a popular (due to its wholesale adoption in the HTTP environment)
 mechanism for generally securing a socket connection.

 Although TLS is not the only mechanism for securing file transfer, it
 does offer some of the following positive attributes:

Ford-Hutchinson Standards Track [Page 3]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc959
https://tools.ietf.org/pdf/rfc959
https://tools.ietf.org/pdf/rfc2246
https://tools.ietf.org/pdf/rfc2246
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc3207
https://tools.ietf.org/pdf/rfc3207
https://tools.ietf.org/pdf/rfc2817
https://tools.ietf.org/pdf/rfc2817
https://tools.ietf.org/pdf/rfc2817
https://tools.ietf.org/pdf/rfc2228

RFC 4217 Securing FTP with TLS October 2005

 - Flexible security levels. TLS can support confidentiality,
 integrity, authentication, or some combination of all of these.
 During a session, this allows clients and servers to dynamically
 decide on the level of security required for a particular data
 transfer.

 - Ability to provide strong authentication of the FTP server.

 - It is possible to use TLS identities to authenticate client
 users and client hosts.

 - Formalised public key management. By use of well established
 client identity mechanisms (supported by TLS) during the
 authentication phase, certificate management may be built into a
 central function. Whilst this may not be desirable for all uses
 of secured file transfer, it offers advantages in certain
 structured environments.

 - Co-existence and interoperation with authentication mechanisms
 that are already in place for the HTTPS protocol. This allows
 web browsers to incorporate secure file transfer using the same
 infrastructure that has been set up to allow secure web
 browsing.

 The TLS protocol is a development of the Netscape Communication
 Corporation’s SSL protocol and this document can be used to allow the
 FTP protocol to be used with either SSL or TLS. The actual protocol
 used will be decided by the negotiation of the protected session by
 the TLS/SSL layer. This document will only refer to the TLS
 protocol; however, it is understood that the Client and Server MAY
 actually be using SSL if they are so configured.

 There are many ways in which these three protocols can be combined.
 This document selects one method by which FTP can operate securely,
 while providing both flexibility and interoperation. This
 necessitates a brief description of the actual negotiation mechanism,
 a detailed description of the required policies and practices, and a
 discussion of the expected behaviours of clients and servers to allow
 either party to impose their security requirements on the FTP
 session.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" that
 appear in this document are to be interpreted as described in
 [RFC-2119].

Ford-Hutchinson Standards Track [Page 4]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc2119

RFC 4217 Securing FTP with TLS October 2005

2. Audience

 This document is aimed at developers who wish to implement TLS as a
 security mechanism to secure FTP clients and/or servers.

 Systems administrators and architects should be fully aware of the
 security implications discussed in [RFC-2228], which need to be
 considered when choosing an implementation of this protocol and
 configuring it to provide their required security.

3. Overview

 A full description of the FTP security protocol enhancements is
 contained in [RFC-2228]. This document describes how the AUTH, PROT,
 PBSZ, and CCC commands, defined therein, should be implemented with
 the TLS protocol.

 In summary, an FTP session is established on the normal control port.
 A client requests TLS with the AUTH command and then decides if it
 wishes to secure the data connections by use of the PBSZ and PROT
 commands. Should a client wish to make the control connection revert
 back into plaintext (for example, once the authentication phase is
 completed), then the CCC command can be used.

 Implementation of this protocol extension does not ensure that each
 and every session and data transfer is secure, it merely provides the
 tools that allow a client and/or server to negotiate an acceptable or
 required level of security for that given session or data transfer.
 However, it is possible to have a server implementation that is
 capable of refusing to operate in an insecure fashion.

4. Session Negotiation on the Control Port

 The server listens on the normal FTP control port {FTP-PORT} and the
 session initiation is not secured at all. Once the client wishes to
 secure the session, the AUTH command is sent and the server MAY then
 allow TLS negotiation to take place.

4.1 . Client Wants a Secured Session

 If a client wishes to attempt to secure a session, then it SHOULD, in
 accordance with [RFC-2228], send the AUTH command with the parameter
 requesting TLS {TLS-PARM} (’TLS’).

 The client then needs to behave according to its policies depending
 on the response received from the server and also the result of the
 TLS negotiation. A client that receives an AUTH rejection MAY choose
 to continue with the session unprotected if it so desires.

Ford-Hutchinson Standards Track [Page 5]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2228

RFC 4217 Securing FTP with TLS October 2005

4.2 . Server Wants a Secured Session

 The FTP protocol does not allow a server to directly dictate client
 behaviour; however, the same effect can be achieved by refusing to
 accept certain FTP commands until the session is secured to a level
 that is acceptable to the server.

 In either case, ’234’ is the server response to an ’AUTH TLS’ command
 that it will honour.

 The ’334’ response, as defined in [RFC-2228], implies that an ADAT
 exchange will follow. This document does not use the ADAT command
 and so the ’334’ reply is incorrect.

 The FTP protocol insists that a USER command be used to identify the
 entity attempting to use the ftp server. Although the TLS
 negotiation may be providing authentication information, the USER
 command MUST still be issued by the client. However, it will be a
 server implementation issue to decide which credentials to accept and
 what consistency checks to make between the client cert used and the
 parameter on the USER command.

 [RFC-2228] states that the user must reauthorize (that is, reissue
 some or all of the USER, PASS, and ACCT commands) following an AUTH
 command. Additionally, this document specifies that all other
 transfer parameters (other than the AUTH parameter) must be reset,
 almost as if a REIN command was issued.

 Reset transfer parameters after the AUTH command, including (but
 are not limited to): user identity, default data ports, TYPE,
 STRU, MODE, and current working directory.

5. Clearing the Control Port

 There are circumstances in which it may be desirable to protect the
 control connection only during part of the session and then to revert
 back to a plaintext connection. This is often due to the limitations
 of boundary devices such as NAT and firewalls, which expect to be
 able to examine the content of the control connection in order to
 modify their behaviour.

 Typically the AUTH, USER, PASS, PBSZ, and PROT commands would be
 protected within the TLS protocol and then the CCC command would be
 issued to return to a plaintext socket state. This has important
 Security Issues (which are discussed in the Security Considerations
 section), but this document describes how the command should be used,
 if the client and server still wish to use it after having considered
 the issues.

Ford-Hutchinson Standards Track [Page 6]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc2228

RFC 4217 Securing FTP with TLS October 2005

 When a server receives the CCC command, it should behave as follows:

 If the server does not accept CCC commands (or does not understand
 them), then a 500 reply should be sent.

 Otherwise, if the control connection is not protected with TLS,
 then a 533 reply should be sent.

 Otherwise, if the server does not wish to allow the control
 connection to be cleared at this time, then a 534 reply should be
 sent.

 Otherwise, the server is accepting the CCC command and should do
 the following:

 o Send a 200 reply.

 o Shutdown the TLS session on the socket and leave it open.

 o Continue the control connection in plaintext, expecting the
 next command from the client to be in plaintext.

 o Not accept any more PBSZ or PROT commands. All subsequent
 data transfers must be protected with the current PROT
 settings.

6. Response to the FEAT Command

 The FEAT command (introduced in [RFC-2389]) allows servers with
 additional features to advertise these to a client by responding to
 the FEAT command. If a server supports the FEAT command, then it
 MUST advertise supported AUTH, PBSZ, and PROT commands in the reply,
 as described in section 3.2 of [RFC-2389] . Additionally, the AUTH
 command should have a reply that identifies ’TLS’ as one of the
 possible parameters to AUTH. It is not necessary to identify the
 ’TLS-C’ synonym separately.

 Example reply (in the same style as [RFC-2389])

 C> FEAT
 S> 211-Extensions supported
 S> AUTH TLS
 S> PBSZ
 S> PROT
 S> 211 END

Ford-Hutchinson Standards Track [Page 7]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc2389
https://tools.ietf.org/pdf/rfc2389#section-3.2
https://tools.ietf.org/pdf/rfc2389

RFC 4217 Securing FTP with TLS October 2005

7. Data Connection Behaviour

 The Data Connection in the FTP model can be used in one of three
 ways. (Note: These descriptions are not necessarily placed in exact
 chronological order, but do describe the steps required. See
 diagrams later for clarification.)

 i) Classic FTP client/server data exchange

 - The client obtains a port; sends the port number to
 the server; the server connects to the client. The
 client issues a send or receive request to the server
 on the control connection and the data transfer
 commences on the data connection.

 ii) Firewall-Friendly client/server data exchange (as
 discussed in [RFC-1579]) using the PASV command to reverse
 the direction of the data connection.

 - The client requests that the server open a port; the
 server obtains a port and returns the address and
 port number to the client; the client connects to the
 server on this port. The client issues a send or
 receive request on the control connection, and the
 data transfer commences on the data connection.

 iii) Client-initiated server/server data exchange (proxy or
 PASV connections).

 - The client requests that server A opens a port;
 server A obtains a port and returns it to the client;
 the client sends this port number to server B.
 Server B connects to server A. The client sends a
 send or receive request to server A and the
 complement to server B and the data transfer
 commences. In this model, server A is the proxy or
 PASV host and is a client for the Data Connection to
 server B.

 For i) and ii), the FTP client MUST be the TLS client and the FTP
 server MUST be the TLS server.

 That is to say, it does not matter which side initiates the
 connection with a connect() call or which side reacts to the
 connection via the accept() call; the FTP client, as defined in
 [RFC-959], is always the TLS client, as defined in [RFC-2246].

Ford-Hutchinson Standards Track [Page 8]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc1579
https://tools.ietf.org/pdf/rfc959
https://tools.ietf.org/pdf/rfc2246

RFC 4217 Securing FTP with TLS October 2005

 In scenario iii), there is a problem in that neither server A nor
 server B is the TLS client, given the fact that an FTP server must
 act as a TLS server for Firewall-Friendly FTP [RFC-1579]. Thus, this
 is explicitly excluded in the security extensions document [RFC-2228]
 and in this document.

8. Mechanisms for the AUTH Command

 The AUTH command takes a single parameter to define the security
 mechanism to be negotiated. As the SSL/TLS protocols self-negotiate
 their levels, there is no need to distinguish between SSL and TLS in
 the application layer. The mechanism name for negotiating TLS is the
 character string identified in {TLS-PARM}. This allows the client
 and server to negotiate TLS on the control connection without
 altering the protection of the data channel. To protect the data
 channel as well, the PBSZ command, followed by the PROT command
 sequence, MUST be used.

 Note: The data connection state MAY be modified by the client issuing
 the PROT command with the new desired level of data channel
 protection and the server replying in the affirmative. This data
 channel protection negotiation can happen at any point in the session
 (even straight after a PORT or PASV command) and as often as is
 required.

 See also Section 16 , "IANA Considerations".

9. Data Connection Security

 The Data Connection security level is determined by the PROT command.

 The PROT command, as specified in [RFC-2228], allows client/server
 negotiation of the security level of the data connection. Once a
 PROT command has been issued by the client and accepted by the
 server returning the ’200’ reply, the security of subsequent data
 connections MUST be at that level until another PROT command is
 issued and accepted; the session ends and a REIN command is
 issued, or the security of the session (via an AUTH command) is
 re-negotiated.

 Data Connection Security Negotiation (the PROT command)

 Note: In line with [RFC-2228], there is no facility for securing
 the Data connection with an insecure Control connection.
 Specifically, the PROT command MUST be preceded by a PBSZ command,
 and a PBSZ command MUST be preceded by a successful security data
 exchange (the TLS negotiation in this case).

Ford-Hutchinson Standards Track [Page 9]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc1579
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2228

RFC 4217 Securing FTP with TLS October 2005

 The command defined in [RFC-2228] to negotiate data connection
 security is the PROT command. As defined, there are four values
 that the PROT command parameter can take.

 ’C’ - Clear - neither Integrity nor Privacy

 ’S’ - Safe - Integrity without Privacy

 ’E’ - Confidential - Privacy without Integrity

 ’P’ - Private - Integrity and Privacy

 As TLS negotiation encompasses (and exceeds) the Safe /
 Confidential / Private distinction, only Private (use TLS) and
 Clear (don’t use TLS) are used.

 For TLS, the data connection can have one of two security levels.

 1) Clear (requested by ’PROT C’)

 2) Private (requested by ’PROT P’)

 With ’Clear’ protection level, the data connection is made without
 TLS. Thus, the connection is unauthenticated and has no
 confidentiality or integrity. This might be the desired behaviour
 for servers sending file lists, pre-encrypted data, or non-
 sensitive data (e.g., for anonymous FTP servers).

 If the data connection security level is ’Private’, then a TLS
 negotiation must take place on the data connection to the
 satisfaction of the Client and Server prior to any data being
 transmitted over the connection. The TLS layers of the Client and
 Server will be responsible for negotiating the exact TLS Cipher
 Suites that will be used (and thus the eventual security of the
 connection).

 In addition, the PBSZ (protection buffer size) command, as
 detailed in [RFC-2228], is compulsory prior to any PROT command.
 This document also defines a data channel encapsulation mechanism
 for protected data buffers. For FTP-TLS, which appears to the FTP
 application as a streaming protection mechanism, this is not
 required. Thus, the PBSZ command MUST still be issued, but must
 have a parameter of ’0’ to indicate that no buffering is taking
 place and the data connection should not be encapsulated.

 Note that PBSZ 0 is not in the grammar of [RFC-2228], section 8.1 ,
 where it is stated:

Ford-Hutchinson Standards Track [Page 10]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2228#section-8.1

RFC 4217 Securing FTP with TLS October 2005

 PBSZ <sp> <decimal-integer> <CRLF> <decimal-integer> ::= any
 decimal integer from 1 to (2^32)-1

 However, it should be noted that using a value of ’0’ to mean a
 streaming protocol is a reasonable use of ’0’ for that parameter
 and is not ambiguous.

 Initial Data Connection Security

 The initial state of the data connection MUST be ’Clear’ (this is
 the behaviour as indicated by [RFC-2228]).

10. A Discussion of Negotiation Behaviour

 As [RFC-2228] allows security qualities to be negotiated, enabled,
 and disabled dynamically, this can make implementations seem quite
 complex. However, in any given instance the behaviour should be
 quite straightforward. Either the server will be enforcing the
 policy of the server host or it will be providing security
 capabilities requested by the client. Either the client will be
 conforming to the server’s policy or will be endeavouring to provide
 the capabilities that the user desires.

10.1 . The Server’s View of the Control Connection

 A server MAY have a policy statement somewhere that might:

 - Deny any command before TLS is negotiated (this might cause
 problems if a SITE or some such command is required prior to
 login).

 - Deny certain commands before TLS is negotiated (e.g., USER,
 PASS, or ACCT).

 - Deny insecure USER commands for certain users (e.g., not
 ftp/anonymous).

 - Deny secure USER commands for certain users (e.g.,
 ftp/anonymous).

 - Define the level(s) of TLS to be allowed.

 - Define the CipherSuites allowed to be used (perhaps on a per
 host/domain/... basis).

 - Allow TLS authentication as a substitute for local
 authentication.

Ford-Hutchinson Standards Track [Page 11]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2228

RFC 4217 Securing FTP with TLS October 2005

 - Define data connection policies (see next section).

 It is possible that the TLS negotiation may not be completed
 satisfactorily for the server, in which case it can be one of
 these states.

 The TLS negotiation failed completely

 In this case, the control connection should still be in an
 unprotected mode and the server SHOULD issue an unprotected
 ’421’ reply to end the session.

 The TLS negotiation completed successfully, but the server
 decides that the session parameters are not acceptable (e.g.,
 Distinguished Name in the client certificate is not permitted
 to use the server).

 In this case, the control connection should still be in a
 protected state, so the server MAY either continue to refuse
 to service commands or issue a protected ’421’ reply and
 close the connection.

 The TLS negotiation failed during the TLS handshake

 In this case, the control connection is in an unknown state
 and the server SHOULD simply drop the control connection.

 The server code will be responsible for implementing the required
 policies and ensuring that the client is prevented from circumventing
 the chosen security by refusing to service those commands that are
 against policy.

10.2 . The Server’s View of the Data Connection

 The server can take one of four basic views of the data connection.

 1 - Don’t allow encryption at all (in which case the PROT command
 should not allow any value other than ’C’ - if it is allowed
 at all).

 2 - Allow the client to choose protection or not.

 3 - Insist on data protection (in which case the PROT command must
 be issued prior to the first attempted data transfer).

 4 - Decide on one of the above three for each and every data
 connection.

Ford-Hutchinson Standards Track [Page 12]

https://tools.ietf.org/pdf/rfc4217

RFC 4217 Securing FTP with TLS October 2005

 The server SHOULD only check the status of the data protection level
 (for options 3 and 4 above) on the actual command that will initiate
 the data transfer (and not on the PORT or PASV). The following
 commands, defined in [RFC-959], cause data connections to be opened
 and thus may be rejected before any 1xx message due to an incorrect
 PROT setting.

 STOR
 RETR
 NLST
 LIST
 STOU
 APPE

 The reply to indicate that the PROT setting is incorrect is ’521 data
 connection cannot be opened with this PROT setting’

 If the protection level indicates that TLS is required, then it
 should be negotiated once the data connection is made. Thus, the
 ’150’ reply only states that the command can be used given the
 current PROT level. Should the server not like the TLS negotiation,
 then it will close the data port immediately and follow the ’150’
 command with a ’522’ reply, which indicates that the TLS negotiation
 failed or was unacceptable. (Note: This means that the application
 can pass a standard list of CipherSuites to the TLS layer for
 negotiation, and review the one negotiated for applicability in each
 instance).

 The Security Considerations section discusses the issue of cross-
 checking any certificates used to authenticate the data connection
 with the one(s) used to authenticate the control connection. This is
 an important security step.

 It is reasonable for the server to insist that the data connection
 uses a TLS cached session. This might be a cache of a previous data
 connection or of a cleared control connection. If this is the reason
 for the refusal to allow the data transfer, then the ’522’ reply
 should indicate this.

 Note: This has an important impact on client design, but allows
 servers to minimise the cycles used during TLS negotiation by
 refusing to perform a full negotiation with a previously
 authenticated client.

 It should be noted that the TLS authentication of the server will be
 authentication of the server host itself and not a user on the server
 host.

Ford-Hutchinson Standards Track [Page 13]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc959

RFC 4217 Securing FTP with TLS October 2005

10.3 . The Client’s View of the Control Connection

 In most cases, it is likely that the client will be using TLS because
 the server would refuse to interact insecurely. To allow for this,
 clients SHOULD be flexible enough to manage the securing of a session
 at the appropriate time and still allow the user/server policies to
 dictate exactly when during the session the security is negotiated.

 In the case where it is the client that is insisting on the securing
 of the session, the client will need to ensure that the negotiations
 are all completed satisfactorily and will need to be able to sensibly
 inform the user should the server not support, or not be prepared to
 use, the required security levels.

 Clients SHOULD be coded in such a manner as to allow the timing of
 the AUTH, PBSZ, and PROT commands to be flexible and dictated by the
 server. It is quite reasonable for a server to refuse certain
 commands prior to these commands. Similarly, it is quite possible
 that a SITE or quoted command might be needed by a server prior to
 the AUTH. A client MUST allow a user to override the timing of these
 commands to suit a specific server.

 For example, a client SHOULD NOT insist on sending the AUTH as the
 first command in a session, nor should it insist on issuing a
 PBSZ/PROT pair directly after the AUTH. This may well be the default
 behaviour, but must be overridable by a user.

 The TLS negotiation may not be completed satisfactorily for the
 client, in which case it will be in one of these states:

 The TLS negotiation failed completely

 In this case, the control connection should still be in an
 unprotected mode and the client should issue an unprotected
 QUIT command to end the session.

 The TLS negotiation completed successfully, but the client decides
 that the session parameters are not acceptable (e.g.,
 Distinguished Name in certificate is not the actual server
 expected).

 In this case, the control connection should still be up in a
 protected state, so the client should issue a protected QUIT
 command to end the session.

Ford-Hutchinson Standards Track [Page 14]

https://tools.ietf.org/pdf/rfc4217

RFC 4217 Securing FTP with TLS October 2005

 The TLS negotiation failed during the TLS handshake.

 In this case, the control connection is in an unknown state and
 the client should simply drop the control connection.

10.4 . The Client’s View of the Data Connection

 Client security policies

 Clients do not typically have ’policies’ as such, instead they
 rely on the user to define their actions and, to a certain extent,
 are reactive to the server policy. Thus, a client will need to
 have commands that will allow the user to switch the protection
 level of the data connection dynamically; however, there may be a
 general ’policy’ that attempts all LIST and NLST commands on a
 Clear connection first (and automatically switches to Private if
 it fails). In this case, there would need to be a user command
 available to ensure that a given data transfer was not attempted
 on an insecure data connection.

 Clients also need to understand that the level of the PROT setting
 is only checked for a particular data transfer after that transfer
 has been requested. Thus, a refusal by the server to accept a
 particular data transfer should not be read by the client as a
 refusal to accept that data protection level completely, as not
 only may other data transfers be acceptable at that protection
 level, but it is entirely possible that the same transfer may be
 accepted at the same protection level at a later point in the
 session.

 It should be noted that the TLS authentication of the client
 should be an authentication of a user on the client host and not
 the client host itself.

11. Who Negotiates What, Where, and How

11.1 . Do we protect at all?

 Client issues ’AUTH TLS’, server accepts or rejects. If the server
 needs AUTH, then it refuses to accept certain commands until it gets
 a successfully protected session.

11.2 . What level of protection do we use on the Control connection?

 Decided entirely by the TLS CipherSuite negotiation.

Ford-Hutchinson Standards Track [Page 15]

https://tools.ietf.org/pdf/rfc4217

RFC 4217 Securing FTP with TLS October 2005

11.3 . Do we protect data connections in general?

 Client issues PROT command, server accepts or rejects.

11.4 . Is protection required for a particular data transfer?

 A client would have already issued a PROT command if it required the
 connection to be protected.

 If a server needs to have the connection protected, then it will
 reply to the STOR/RETR/NLST/... command with a ’522’, indicating that
 the current state of the data connection protection level is not
 sufficient for that data transfer at that time.

11.5 . What level of protection is required for a particular data
 transfer?

 Decided entirely by the TLS CipherSuite negotiation.

 Thus, for flexibility, it can be seen that it is desirable for the
 FTP application to be able to interact with the TLS layer upon which
 it sits to define and discover the exact TLS CipherSuites that are to
 be/have been negotiated and to make decisions accordingly.

12. Timing Diagrams

 These timing diagrams aim to help explain exactly how the TLS
 handshake and session protection fits into the existing logic of the
 FTP protocol. Of course, the FTP protocol itself is not well
 described with respect to the timing of commands and responses in
 [RFC-959], so this is partly based on empirical observation of
 existing widespread client and server implementations.

Ford-Hutchinson Standards Track [Page 16]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc959

RFC 4217 Securing FTP with TLS October 2005

12.1 . Establishing a Protected Session

 Client Server
 control data data control
 ==

 socket()
 bind()
 socket()
 connect() --> accept()
 <-- 220
 AUTH TLS -->
 <-- 234
 TLSneg() <--> TLSneg()
 PBSZ 0 -->
 <-- 200
 PROT P -->
 <-- 200
 USER fred -->
 <-- 331
 PASS pass -->
 <-- 230

 Note 1: The order of the PBSZ/PROT pair and the USER/PASS pair (with
 respect to each other) is not important (i.e., the USER/PASS can
 happen prior to the PBSZ/PROT, or the server can refuse to allow a
 PBSZ/PROT pair until the USER/PASS pair has happened).

 Note 2: The PASS command might not be required at all (if the USER
 parameter and any client identity presented provide sufficient
 authentication). The server would indicate this by issuing a ’232’
 reply to the USER command instead of the ’331’, which requests a PASS
 from the client (see below).

 Note 3: The AUTH command might not be the first command after the
 receipt of the 220 welcome message.

Ford-Hutchinson Standards Track [Page 17]

https://tools.ietf.org/pdf/rfc4217

RFC 4217 Securing FTP with TLS October 2005

12.2 . Establishing a Protected Session Without a Password Request
 (The TLS Authentication is Sufficient)

 Client Server
 control data data control
 ==

 socket()
 bind()
 socket()
 connect() --> accept()
 <-- 220
 AUTH TLS -->
 <-- 234
 TLSneg() <--> TLSneg()
 PBSZ 0 -->
 <-- 200
 PROT P -->
 <-- 200
 USER fred -->
 <-- 232

Ford-Hutchinson Standards Track [Page 18]

https://tools.ietf.org/pdf/rfc4217

RFC 4217 Securing FTP with TLS October 2005

12.3 . Establishing a Protected Session and then Clearing with the CCC
 Command

 Client Server
 control data data control
 ==

 socket()
 bind()
 socket()
 connect() --> accept()
 <-- 220
 AUTH TLS -->
 <-- 234
 TLSneg() <--> TLSneg()
 PBSZ 0 -->
 <-- 200
 PROT P -->
 <-- 200
 USER fred -->
 <-- 232
 CCC -->
 <-- 200
 TLSshutdown() <-------------------------------------> TLSshutdown()

 - The rest of the control session continues in plaintext with
 protected data transfers (due to PROT P).

 Note: This has serious security issues (see Security Considerations
 section) but may be useful in a firewall/NAT scenario.

Ford-Hutchinson Standards Track [Page 19]

https://tools.ietf.org/pdf/rfc4217

RFC 4217 Securing FTP with TLS October 2005

12.4 . A Standard Data Transfer Without Protection

 Client Server
 control data data control
 ==

 socket()
 bind()
 PORT w,x,y,z,a,b --->
 <--- 200
 STOR file -->
 socket()
 bind()
 <--- 150
 accept() <----------- connect()
 write() -----------> read()
 close() -----------> close()
 <--- 226

12.5 . A Firewall-Friendly Data Transfer Without Protection

 Client Server
 control data data control
 ==

 PASV -->
 socket()
 bind()
 <-- 227 (w,x,y,z,a,b)
 socket()
 STOR file --->
 connect() ----------> accept()
 <-- 150
 write() ----------> read()
 close() ----------> close()
 <-- 226

 Note: Implementers should be aware that the connect()/accept()
 function is performed prior to the receipt of the reply from the STOR
 command. This contrasts the with situation when a non-firewall-
 friendly PORT is used prior to the STOR, and the accept()/connect()
 is performed after the reply from the aforementioned STOR has been
 dealt with.

Ford-Hutchinson Standards Track [Page 20]

https://tools.ietf.org/pdf/rfc4217

RFC 4217 Securing FTP with TLS October 2005

12.6 . A Standard Data Transfer with Protection

 Client Server
 control data data control
 ==

 socket()
 bind()
 PORT w,x,y,z,a,b -->
 <-- 200
 STOR file --->
 socket()
 bind()
 <-- 150
 accept() <---------- connect()
 TLSneg() <----------> TLSneg()
 TLSwrite() ----------> TLSread()
 TLSshutdown() -------> TLSshutdown()
 close() ----------> close()
 <-- 226

12.7 . A Firewall-Friendly Data Transfer with Protection

 Client Server
 control data data control
 ==

 PASV -->
 socket()
 bind()
 <-- 227 (w,x,y,z,a,b)
 socket()
 STOR file --->
 connect() ----------> accept()
 <-- 150
 TLSneg() <---------> TLSneg()
 TLSwrite() ---------> TLSread()
 TLSshutdown() -------> TLSshutdown()
 close() ---------> close()
 <-- 226

Ford-Hutchinson Standards Track [Page 21]

https://tools.ietf.org/pdf/rfc4217

RFC 4217 Securing FTP with TLS October 2005

13. Discussion of the REIN Command

 The REIN command, defined in [RFC-959], allows the user to reset the
 state of the FTP session. From [RFC-959]:

 REINITIALIZE (REIN)

 This command terminates a USER, flushing all I/O and account
 information, except to allow any transfer in progress to be
 completed. All parameters are reset to the default settings
 and the control connection is left open. This is identical to
 the state in which a user finds himself immediately after the
 control connection is opened. A USER command may be expected
 to follow.

 When this command is processed by the server, the TLS session(s) MUST
 be cleared and the control and data connections revert to
 unprotected, clear communications. It MAY be acceptable to use
 cached TLS sessions for subsequent connections, however, a server
 MUST NOT mandate this.

 If the REIN command is being used to clear a TLS session, then the
 reply to the REIN command MUST be sent in a protected session prior
 to the session(s) being cleared.

14. Discussion of the STAT and ABOR Commands

 The ABOR and STAT commands and the use of TCP Urgent Pointers

 [RFC-959] describes the use of Telnet commands (IP and DM) and the
 TCP Urgent pointer to indicate the transmission of commands on the
 control channel during the execution of a data transfer. FTP uses
 the Telnet Interrupt Process and Data Mark commands in conjunction
 with Urgent data to preface two commands: ABOR (Abort Transfer)
 and STAT (Status request).

 The Urgent Pointer was used because, in a Unix implementation, the
 receipt of a TCP packet marked as Urgent would result in the
 execution of the SIGURG interrupt handler. This reliance on
 interrupt handlers was necessary on systems that did not implement
 select() or did not support multiple threads. TLS does not
 support the notion of Urgent data.

 When TLS is implemented as a security method in FTP, the server
 SHOULD NOT rely on the use of SIGURG to process input on the
 control channel during data transfers. The client MUST send all
 data, including Telnet commands, across the TLS session.

Ford-Hutchinson Standards Track [Page 22]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc959
https://tools.ietf.org/pdf/rfc959

RFC 4217 Securing FTP with TLS October 2005

15. Security Considerations

 This document discusses how TLS may be used in conjunction with
 [RFC-2228] to provide mechanisms for securing FTP sessions.
 Discussions about security rationale and security properties are
 contained within the [RFC-2228] document and are not repeated here.

15.1 . Verification of Authentication Tokens

 In this section, we assume that X.509 certificates will be used for
 the TLS authentication. If some other identity token is used (e.g.,
 kerberos tickets - see [RFC-2712]), then similar, mechanism-specific
 considerations will need to be made.

15.1.1 . Server Certificates

 - Although it is entirely an implementation decision, it is
 recommended that certificates used for server authentication of the
 TLS session contain the server identification information in a
 similar manner to those used for http servers (see [RFC-2818]).

 - It is strongly recommended that the certificate used for server
 authentication of Data connections be the same certificate as that
 used for the corresponding Control connection. If different
 certificates are to be used, there should be some other mechanism
 that the client can use to cross-check the data and control
 connection server identities.

 - If Server Certificates are not used, then many of the security
 benefits will not be realised. For Example, in an anonymous
 Diffie-Hellman environment, there is no server identity
 authentication, so there is little protection against man-in-the-
 middle attacks.

15.1.2 . Client Certificates

 - Deciding which client certificates to allow and defining which
 fields define what authentication information is entirely a server
 implementation issue.

 - However, it is strongly recommended that the certificate used for
 client authentication of Data connections be the same certificate
 as that used for the corresponding Control connection. If
 different certificates are to be used, there should be some other
 mechanism that the server can use to cross-check the data and
 control connection client identities.

Ford-Hutchinson Standards Track [Page 23]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2712
https://tools.ietf.org/pdf/rfc2818

RFC 4217 Securing FTP with TLS October 2005

 - If Client Certificates are not used, then many of the security
 benefits will not be realised. For Example, it would still be
 possible for a malicious client to hijack a data connection.

15.2 . Addressing FTP Security Considerations [RFC-2577]

15.2.1 . Bounce Attack

 A bounce attack should be harder in a secured FTP environment
 because:

 - The FTP server that is being used to initiate a false connection
 will always be a ’server’ in the TLS context. Therefore, only
 services that act as ’clients’ in the TLS context could be
 vulnerable. This would be a counter-intuitive way to implement
 TLS on a service.

 - The FTP server would detect that the authentication credentials
 for the data connection are not the same as those for the
 control connection, thus the server policies could be set to
 drop the data connection.

 - Genuine users are less likely to initiate such attacks when the
 authentication is strong, and malicious users are less likely to
 gain access to the FTP server if the authentication is not
 easily subverted (password guessing, network tracing, etc...)

15.2.2 . Restricting Access

 This document presents a strong mechanism for solving the issue
 raised in this section.

15.2.3 . Protecting Passwords

 The twin solutions of strong authentication and data confidentiality
 ensure that this is not an issue when TLS is used to protect the
 control session.

15.2.4 . Privacy

 The TLS protocol ensures data confidentiality by encryption. Privacy
 (e.g., access to download logs, user profile information, etc...) is
 outside the scope of this document (and [RFC-2577] presumably).

15.2.5 . Protecting Usernames

 This is not an issue when TLS is used as the primary authentication
 mechanism.

Ford-Hutchinson Standards Track [Page 24]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc2577
https://tools.ietf.org/pdf/rfc2577

RFC 4217 Securing FTP with TLS October 2005

15.2.6 . Port Stealing

 This specification will do little for the Denial of Service element
 of this section; however, strong authentication on the data
 connection will prevent unauthorised connections from retrieving or
 submitting files. Of course, this is only the case where strong
 client authentication is being used. If client certificates are not
 used, then port stealing by a rogue client is still a problem. If no
 strong authentication is in use at all (e.g., anonymous Diffie-
 Hellman), then the port stealing problem will remain.

15.2.7 . Software-Based Security Problems

 Nothing in this specification will affect the discussion in this
 section.

15.3 . Issues with the CCC Command

 Using the CCC command can create security issues. For a full
 description, see the "CLEAR COMMAND CHANNEL (CCC)" section of
 [RFC-2228]. Clients should not assume that a server will allow the
 CCC command to be processed.

 Server implementations may wish to refuse to process the CCC command
 on a session that has not passed through some form of client
 authentication (e.g., TLS client auth or FTP USER/PASS). This can
 prevent anonymous clients from repeatedly requesting AUTH TLS
 followed by CCC to tie up resources on the server.

16. IANA Considerations

 {FTP-PORT} - The port assigned to the FTP control connection is 21.

17. Other Parameters

 {TLS-PARM} - The parameter for the AUTH command to indicate that TLS
 is required. To request the TLS protocol in accordance with this
 document, the client MUST use ’TLS’

 To maintain backward compatibility with older versions of this
 document, the server SHOULD accept ’TLS-C’ as a synonym for ’TLS’.

 Note: [RFC-2228] states that these parameters are case-
 insensitive.

Ford-Hutchinson Standards Track [Page 25]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2228

RFC 4217 Securing FTP with TLS October 2005

18. Scalability and Limits

 There are no issues other than those concerned with the ability of
 the server to refuse to have a complete TLS negotiation for each and
 every data connection, which will allow servers to retain throughput
 whilst using cycles only when necessary.

19. Applicability

 This mechanism is generally applicable as a mechanism for securing
 the FTP protocol. It is unlikely that anonymous FTP clients or
 servers will require such security (although some might like the
 authentication features without the confidentiality).

20. Acknowledgements

 o Netscape Communications Corporation for the original SSL protocol.

 o Eric Young for the SSLeay libraries.

 o University of California, Berkeley for the original
 implementations of FTP and ftpd, on which the initial
 implementation of these extensions were layered.

 o IETF CAT working group.

 o IETF TLS working group.

 o IETF FTPEXT working group.

 o Jeff Altman for the ABOR and STAT discussion.

 o The various people who have help author this document throughout
 its protracted draft stages, namely Martin Carpenter, Eric Murray,
 Tim Hudson, and Volker Wiegand.

21. References

21.1 . Normative References

 [RFC-959] Postel, J. and J. Reynolds, "File Transfer Protocol", STD
 9, RFC 959 , October 1985.

 [RFC-2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 , March 1997.

 [RFC-2228] Horowitz, M. and S. Lunt, "FTP Security Extensions", RFC
 2228 , October 1997.

Ford-Hutchinson Standards Track [Page 26]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc959
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2228
https://tools.ietf.org/pdf/rfc2228

RFC 4217 Securing FTP with TLS October 2005

 [RFC-2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246 , January 1999.

 [RFC-2389] Hethmon, P. and R. Elz, "Feature negotiation mechanism for
 the File Transfer Protocol", RFC 2389 , August 1998.

21.2 . Informative References

 [RFC-1579] Bellovin, S., "Firewall-Friendly FTP", RFC 1579 , February
 1994.

 [RFC-2222] Myers, J., "Simple Authentication and Security Layer
 (SASL)", RFC 2222 , October 1997.

 [RFC-2577] Allman, M. and S. Ostermann, "FTP Security
 Considerations", RFC 2577 , May 1999.

 [RFC-2712] Medvinsky, A. and M. Hur, "Addition of Kerberos Cipher
 Suites to Transport Layer Security (TLS)", RFC 2712 ,
 October 1999.

 [RFC-2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within
 HTTP/1.1", RFC 2817 , May 2000.

 [RFC-2818] Rescorla, E., "HTTP Over TLS", RFC 2818 , May 2000.

 [RFC-3207] Hoffman, P., "SMTP Service Extension for Secure SMTP over
 Transport Layer Security", RFC 3207 , February 2002.

Ford-Hutchinson Standards Track [Page 27]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc2246
https://tools.ietf.org/pdf/rfc2389
https://tools.ietf.org/pdf/rfc1579
https://tools.ietf.org/pdf/rfc2222
https://tools.ietf.org/pdf/rfc2577
https://tools.ietf.org/pdf/rfc2712
https://tools.ietf.org/pdf/rfc2817
https://tools.ietf.org/pdf/rfc2818
https://tools.ietf.org/pdf/rfc3207

RFC 4217 Securing FTP with TLS October 2005

Contributors

 Tim Hudson
 RSA Data Security
 Australia Pty Ltd

 Phone: +61 7 3227 4444
 EMail: tjh@rsasecurity.com.au

 Volker Wiegand
 SuSE Linux

 EMail: wiegand@suse.de

 Martin Carpenter
 Verisign Ltd

 EMail: mcarpenter@verisign.com

 Eric Murray
 Wave Systems Inc.

 EMail: ericm@lne.com

Author’s Address

 Paul Ford-Hutchinson
 IBM UK Ltd
 PO Box 31
 Birmingham Road
 Warwick
 United Kingdom

 Phone: +44 1926 462005
 EMail: rfc4217 @ford-hutchinson.com

Ford-Hutchinson Standards Track [Page 28]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/rfc4217

RFC 4217 Securing FTP with TLS October 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78 , and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79 .

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr .

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Ford-Hutchinson Standards Track [Page 29]

https://tools.ietf.org/pdf/rfc4217
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://www.ietf.org/ipr

